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A methodology is proposed to relate the diffusion coefficient of small penetrant molecules in polymers 
to temperature, strain, and penetrant concentration. The  approach used is based o n  well-known free 
volume theories. It is assumed that the transport kinetics is governed by the constant redistribution of 
the free volume, caused by the segmental motions of the polymeric chains. A n  expression for the 
diffusion coefficient is inferred from the temperature, strain, and penetrant concentration dependence 
of the free volume. The stress dependence of solubility is predicted from the Hildebrand theory. It is 
shown that the resulting constitutive equations exhibit many features desirable for joint durability 
studies. Finally, a non-Fickian driving force arising from differential swelling is included in the 
governing equations. 

KEY WORDS Diffusion; polymer (or adhesive); stress-assisted diffusion; free volume; solubility; 
dilatational strain. 

INTRODUCTION 

Moisture may enter a bond by diffusion through the adhesive, through the 
adherends or by moving along an interphase region. If one assumes that water 
molecules have the same degradative effect on the adhesive and interphase 
region, regardless of their migration path, then it becomes of ultimate concern to 
be able to understand and to predict the kinetics of moisture ingression via the 

* To whom correspondence should be addressed. 

1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
2
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



2 D.  R. LEFEBVRE, D. A. DILLARD AND T. C. WARD 

different paths. This paper investigates an important mode of moisture intrusion 
into a joint: bulk diffusion through the adhesive. 

Earlier work has demonstrated that the diffusion rate in a polymer can be 
increased by a number of factors such as temperature, stress and damage. In 
particular, “non-Fickian” kinetics, often associated with a sharp diffusion front, 
has been attributed to a strong dependence of the diffusion coefficient on 
concentration and/or moisture-induced damage. Externally applied stresses, 
residual stresses, and swelling stresses are known to affect diffusion rate. These 
various features (with the exception of damage) are reviewed in light of their 
usefulness to the specific problem of moisture diffusion in adhesive joints. 
Although damage can significantly enhance moisture ingression, it is reasonable 
to exclude it from this preliminary investigation because joints in service in moist 
environments are normally loaded to a small fraction of their ultimate breaking 
strength (dry), thereby minimizing damage arising solely from the applied load. 

In Part I, the theoretical background leading to the equations governing 
diffusion will be reviewed in detail. Although the key concepts underlying the 
proposed theoretical treatment have been studied by several other workers, some 
novelty is introduced in the mathematical formulation of the constitutive 
relations. One of the major objectives of this study is to offer a treatment unifying 
both the diffusion behavior and the mechanical behavior into a single phenome- 
nological model. It will be shown that the unified approach not only facilitates the 
description of the coupling between diffusion and stress relaxation, but also leads 
to a common material characterization. Many workers have recognized the 
importance, in the case of polymers, of the interdependence between the 
diffusion process and stress relaxation. Unfortunately, the solutions proposed to 
date have either dealt with specific boundary value problems or have failed to 
include in one single treatment, all the known forms of coupling. It follows that 
the solutions offered were often severely restricted in their conditions of 
applicability. By contrast, this treatment is meant to be as general as possible, 
and to be implemented in a finite element code. Unlike closed form solutions, the 
Finite Element Method can deal with almost any kind of boundary value problem 
of interest to designers. In the field of adhesion engineering, our goal is to 
provide designers with a general computational method to predict moisture 
intrusion into adhesive bond lines or into composite matrices, when they are 
subjected to a combination of external loading and internal swelling. 

Part I is introductory and thus should be appraised only in the context of the 
entire work. In particular, Part I is not sufficient to understand fully the effect of 
stress and stress relaxation on diffusion. The constitutive relations for the 
mechanical behavior and swelling behavior are discussed in Part 111. 

GENERAL FORM OF THE EQUATION GOVERNING DIFFUSION 

Let us consider a binary mixture consisting of a penetrant of small size (e.g., 
water) permeating a polymer. The polymer is isotropic, amorphous and can be in 
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MOISTURE IN ADHESIVE JOINTS. PART I 3 

either the glassy, leathery or rubbery state. It is natural to assume that the small 
penetrant molecules are much more mobile than the polymeric macromolecules. 
It follows that mass transport in this system can be described in terms of one flux 
only, namely that of the penetrant, because the polymer can be considered as a 
fixed reference. In general, the mass flux of penetrant can be separated in four 
components, each corresponding to a class of thermodynamic driving force.' 
Each driving force gives rise to small perturbations in the random walk of the 
diffusing species. Assuming the driving forces are uncoupled, and the departure 
from randomness small, the resulting macroscopic fluxes are additive: 

J = J~ + J~ + J"+  J@ (1) 

where: Jc = Fickian mass flux (entropy driven) 
J T  = thermally-driven mass flux 
J" = stress-induced mass flux 
J@ = forced mass flux (driven by an external force) 

(Bold characters will represent vectorial quantities throughout this paper) 
The Fickian flux arises as a result of concentration gradients and is given by: 

J ~ = - D V C  (2) 

where: D = diffusion coefficient 
C = penetrant concentration 
V = gradient operator 

Expression (2) is known as Fick's First Law as long as D is a constant or  a 
function of C only. It will be shown later that the diffusion coefficient is a function 
of temperature and stress (or strain) as well: 

D = D ( C ,  T ,  a) (3) 

where: T =temperature 
u = stress. 

The thermal flux is driven by temperature gradients and is known as the Soret 
Effect:' 

where: DT = thermal diffusion coefficient 

Thermal diffusion becomes a significant component of the overall flux when an 
adhesive undergoes frequent temperature fluctuations. Sudden variations in 
external temperature give rise to temperature gradients internally which may 
persist for a long time, especially when the structure has a low thermal 
conductivity. 

The stress-induced flux is produced by a non-uniform stress field' and is 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
2
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



4 D. R. LEFEBVRE, D. A. DILLARD AND T. C. WARD 

given by: 
DC 
RT 

J"= ----VW, 

where: R = the gas constant 
Wp = potential energy function 

There is no general form for W,. It is a function of the local entropy change of 
the penetrant when the polymer is subject to a stress (strain) field. Since the 
stress distribution within a joint is rarely uniform, proper attention should be 
given to this effect a priori. Furthermore, if the adhesive tends to swell by a large 
amount in the presence of the penetrant, J" could conceivably become quite large 
because differential swelling across the adhesive is generally constrained by stiff 
adherends, leading to large pressure gradients internally, under either sorption or 
desorption processes. A possible form for W, will be suggested in this article. 

The forced diffusion flux is of importance in cases when the penetrant 
molecules are subject to an external force field (e.g., electrical or inertial). In an 
adhesive joint, such a field may exist locally in the region known as the 
interphase. Close to a hydrophilic oxide layer, the intermolecular field ex- 
perienced by a water molecule can be more intense than in the bulk polymer. 
This disparity is expected to cause local perturbations in the diffusive flux. It 
should be noted that, in this article, J* refers to a component of the flux arising 
from any external force field, with the exception of stress fields. The effect of 
stress fields is already incorporated in the J" component of the flux. 

Let us now consider the total flux J.  Since conservation of mass must be 
satisfied, we must have: 

-= - v . J  
at 

where I is time, leading to the final governing equation: 

C dc = V - { D ( C ,  T,  o)[ VC + - VW'] + J T  + J@) 
at RT (7) 

In the remaining discussion, the problem will be reduced to that of diffusion in 
a medium of uniform temperature and in the absence of an external force field 
(J' = J*= 0). Expression (7) shows that the effect of stress is twofold: (1) stress 
field gradients give rise to a thermodynamic force VW, and (2) stress also affects 
the mobility of the penetrant, quantified here by the diffusion coefficient. The 
effect of stress on mobility does not disappear in a uniform stress field, although 
the stress-induced driving force does vanish. 

At this point, it is useful to recall that polymeric adhesives are viscoelastic in 
nature. Thus, our governing equation is valid instantaneously only. Stress and 
stress gradients need to be updated constantly in order to account properly for 
the rheology of the material. The problem of the coupling between the diffusion 
boundary value problem and the viscoelasticity boundary value problem will be 
addressed in more detail in Part 111. For the time being, we simply need to keep 
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MOISTURE IN ADHESIVE JOINTS. PART I 5 

in mind that the governing equation is implicitly time dependent on the right 
hand side of the equation. 

A thorough literature led us to conclude that expression (7) contains 
many of the known features necessary for modelling non-Fickian transport in the 
absence of damage. These features are: 

1. The history dependence of the diffusion coefficient, in this case, through the 

2. The effect of a non-uniform stress distribution, and 
3. The concentration dependence of the diffusion coefficient. (Although listed 

as a source of anomalous behavior, this concentration dependence does not, 
in fact, violate Fick’s Second Law in its most general form). 

coupling with the viscoelastic response, 

Note that the proposed governing equation is by no means the only possible 
theoretical model. It simply contains provision for important features often found 
in separate theories, but not in a unified approach. 

The stress dependence of the solubility (accompanied here by an implicit time 
dependence) has also been identified as a source of non-Fickian behavior.7-’ This 
difficulty can be addressed in the framework of a numerical analysis, by 
normalizing the concentration with respect to the saturation level at the current 
time step, and by providing an adequate model for the stress dependence of 
solubility. Such a model will be discussed later in this article. 

A MODEL FOR THE DIFFUSION COEFFICIENT BASED ON THE COHEN- 
TURNBULL THEORY 

The purpose of this section is to establish a general theory for predicting the 
diffusion of small molecules in polymeric materials. Particular attention will be 
devoted to the temperature dependence, stress dependence and penetrant- 
concentration dependence of D. 

The Cohen-Turnbull model 

The Cohen-Turnbull was originally developed to describe self- 
diffusion in an ideal liquid made of hard spheres, but it has been extended to 
concentrated solutions and undiluted polymers. The model is based on the idea 
that molecular transport occurs by the movement of molecules into voids with a 
size greater than some critical value. Voids are formed by the statistical 
redistribution of the free volume. Free volume is defined as: 

where: V = specific volume 
V, = occupied volume 
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6 D. R. LEFEBVRE, D. A. DILLARD AND T. C. WARD 

Furthermore, it is assumed that: 

1. Free volume is continually redistributed with time, and that no local free 
energy is required for redistribution. As a result, distribution is random. 

2. Molecular transport occurs by the movement of diffusing molecules into 
voids of at least their molecular size, which are formed as a result of the 
random redistribution of free volume. 

In the case of the self diffusion (or viscous flow) of a polymer, the molecular jump 
representation must be replaced by the concept of segmental rearrangements 
which can occur whenever the surrounding free volume reaches some critical 
value V,. In other words, in order for a portion of the polymeric chain to take a 
new conformation, the “cage” formed by nearest neighbors must reach a 
critical size. 

The probability that n increments of free volume of average size V, would 

accumulate into a void of size V, is proportional to exp -8- , where 8 is an 

overlap factor arising from the fact that the same void is available to more than 
one molecule. In the case of viscous flow, critical volume V, must be large enough 
to allow a local rearrangement of the chain conformation, whereas in the case of 
the diffusion of a small penetrant, V, must be large enough to allow a local 
molecular jump of the penetrant. Thus V, is a characteristic of the polymer only 
in the case of self diffusion (or viscous processes) and V, is a characteristic of a 
given polymer-penetrant pair in the case of the diffusion of a small penetrant 
molecule. From the form of the probability distribution, it follows that the 
diffusion coefficient contains an activation volume term: 

( ;) 

Equation (9) implies that the free volume is the only parameter involved in 
describing transport phenomena. This theory is not sufficient, however, at 
temperatures too low relative to the glass transition temperature T,, when 
motions of the chains within the free volume are too slow. Nor does it apply at 
very high temperatures where activation energy barriers must be o ~ e r c o m e . ’ ~  
Note that in the framework of the Cohen-Turnbull theory the free volume is not 
the true free volume in the geometric sense, but only that portion of the total free 
volume which can be redistributed with no local change in free energy. It follows 
that the occupied volume V, defined here is not the hard-shell volume, but a 
larger quantity which can be changed by a stress field ( i .e . ,  the occupied volume 
is compressible). 

The Macedo-Litovitz and Vrentas-Duda theories 

Macedo and Litovitz’* introduced an expression for the self-diffusion coefficient 
very similar to that of Cohen and Turnbull, except that it contains an activation 
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MOISTURE IN ADHESIVE JOINTS. PART I 7 

energy factor: 

D =Doexp(-g)exp(-8;)  

It was postulated that, in addition to the minimum hole-size requirement, an 
energy barrier must be surmounted. When inverted, expression (10) describes a 
viscosity. The obtained form is virtually identical to a known extension of the 
WLF equation including an Arrhenius-like temperature dependence. l3 In the 
glassy state (non-equilibrium), the temperature dependence predicted by the 
elementary WLF equation is known to be incorrect and an Arrhenius tempera- 
ture dependence has been widely reported. This finding is consistent with 
expression (10) and will be the object of further discussion later. 

Vrentas et ~ 1 . ' ~  developed a constitutive behavior for the self diffusion in 
polymers based on Eq. (10). Their treatment of the free volume is more complex 
than the one used in this work. In addition to the free volume treatment of Cohen 
and Turnbull, the Flory-Huggins polymer solution theory and some aspects of 
the entanglement theory of Bueche are employed. An average free volume q, as 
well as an average critical volume K, are defined for the binary mixtures sorbent 
(subscript 1)-polymer (subscript 2): 

V, = k i i ~ i ( k 2 1  + T - qi) + k12~()2(k22 + T - Tg2) 

v; = 0,  P: + w25ri: 
(11) 

(12) 

where: mi = mass fraction of component i ;  
Tgi = glass transition temperature of component i ;  

k l l ,  kz1 = free volume parameters for the solvent; 
kI2,  k22 = free volume parameters for the polymer; 

5 = ratio of the critical molar volume of the penetrant jumping 
unit to the critical molar volume of the polymer jumping unit 

= specific critical hole free volume of component i. 

In the limit, when the mass fraction of penetrant is small, v/ and Vc become 
mainly polymer dependent and the above approach becomes equivalent to the 
one shown herein. Our simpler approach, in which the free volume of the mixture 
is dominated by that of the polymer, is very reasonable because polymers with a 
large moisture solubility are not suitable for the structural adhesive applications 
with which we are concerned. 

Extension of the Doolittle theory to the problem of diffusion of small molecules 

Doolittle proposed an empirical equation relating polymer viscosity to the free 
volume, which was found to apply to polymers in their rubbery range.13 Fluidity 
F, the inverse of viscosity, is given by: 

F = A - ' e x p  - B -  ( "v,") 
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8 D. R. LEFEBVRE, D.  A. DILLARD AND T. C. WARD 

where A and B are empirical constants. The parallelism between Eqs. (9) and 
(13) is striking. This was explained earlier by the fact that the elementary process 
for viscous flow and the elementary process for sorbent diffusion are identical. In 
order to prove that Eqs. (9) and (13) are identical mathematically, one can use 
Einstein’s equation for the diffusion coefficient and Stokes’ equation for the 
friction constant. According to Einstein’s equation for the diffusion coefficient:” 

kT D=- 
c 
J n  

where: D = diffusion coefficient 
k = Boltzmann constant 
T = temperature 

fn = friction constant 

Equation (14) holds for any thermally-driven process governed by the three- 
dimensional random walk of diffusing species. Stokes’ equation states that the 
friction constant is proportional to vis~osity:’~ 

fn = A77 (15) 
As reviewed by Ferry,” the work of Rouse and Bueche demonstrated that Eq. 

(15) holds for polymers and that the proportionality coefficient A is a function of 
density, molecular weight, and molecular g e ~ m e t r y . ’ ~  In this case, fn is a measure 
of segmental frictional resistance. Combining (14) and (15:) yields: 

D = A-’kTF (16) 
And we find a diffusion coefficient of the form: 

D = p T  exp -8- ( ”,”) 
where p is a material constant. Let 77 and v0 be the viscosities of the polymer and 
f and fo the fractional free volumes at a given temperature T and a reference 
temperature T,, respectively. (The fractional free volume is defined as the ratio 
b / V ) .  Doolittle, in his work on the viscous flow of polymers, showed that:I3 

where B is the empirical constant mentioned earlier. Assuming that f changes 
linearly with temperature, 

and combining with expression (18) leads to the well known WLF equation for 

B the shift factor a :  

f =fo + - To) (19) 

- ( T  - To) fo 
fo (20) L n a  = - 
- + T - T ,  
(Y 
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MOISTURE IN ADHESIVE JOINTS. PART I 9 

The WLF equation concerns itself with the viscoelastic response. It was noted 
earlier that, in general, the critical hole size V, for the local rearrangement of a 
polymer segment is not the same as the critical hole size for penetrant jump. It 
can be seen in expression (9) that a change in V, can be expressed mathematically 
by varying 0, with V, remaining constant. Noting that 0 and B are inversely 
related, it is now possible to extend conveniently the above results to the diffusion 
of a penetrant of small size, simply by replacing B by B D ,  a numerical parameter 
inversely related to the minimum hole size for the jump of a small penetrant 
molecule. 

By combining expressions (14), (15) and (18) a diffusion counterpart of the 
Doolittle equation is found: 

Derivation of the constitutive equation for the diffusion of a penetrant of small 
size 

Several investigations in the field of rheology have suggested that free volume is a 
good unifying parameter to describe changes in the time scale of material 
response. In the WLF equation, the effect of temperature was incorporated by 
stating that the fractional free volume was a linear function of temperature in the 
rubbery range. Likewise, the effect of stress and solvent concentration can be 
introduced by stating as a first approximation that the fractional free volume is a 
linear function of the dilational stress component and the solvent concentration. 
Knauss and Emri16 used this concept to develop a nonlinear viscoelastic 
constitutive behavior centered on free volume effects. They postulated that the 
change in fractional free volume due to each variable was additive: 

where: a = coefficient (volumetric) of thermal expansion of the free volume 
y = coefficient (volumetric) of swelling 

&fkk = volume dilatation of the free volume due to external loads 

However, as pointed out by Knauss and Emri, it is more appropriate to state that 
the free volume depends on the temperature history, strain history and swelling 
history if we are to extend this concept to the glassy range. Thus f should be 
written in the form of a sum of convolution integrals: 

f =fo + a(t) * dT + &fkk(t)  + y ( t )  * dC (23) 

at first, we will limit ourselves to the simpler case where a, and y are time 
independent and Eq. (23) reduces to (22). These assumptions are known to  be 
correct above where the system is always close to thermodynamic equilibrium. 
The linearity in concentration is unlikely to be obeyed with solvents reaching high 
concentrations. For this reason, it will be assumed that the change in free volume 
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10 D. R. LEFEBVRE, D. A. DILLARD AND T. C. WARD 

due to the solvent is better described by: 

Af = yCN (24) 
Expression (22) then becomes: 

f =fo + (Y AT + I& + yCN 

The exponent N must be considered as an adjustable parameter relating to the 
occurrence of non-zero volume change on mixing. Substituting (25) in (21) yields 
an expression for the diffusion coefficient: 

Do [ B D  ( Y ( T - T , ) + & + Y P '  -1 D = - T e x p  - To fo h + - T,) + 4& + YCN 
Although there are eight parameters in this theory, each has a precise physical 
significance. Subscript 0 on any variable refers to a reference temperature To. In 
order to use BD,  f, and (Y from the WLF theory, it is convenient to use To = Tg .  
The domain of validity of equation (26) is the same as that of the WLF equation, 
that is, roughly: { T g ,  

As pointed out previously, an activation energy must be introduced if one 
wishes to extend (26) above Tg + 100. This temperature range however, is not 
considered in the current discussion. 

+ loo}. 

Extension to the glassy state, physical aging 

Expression (26) was originally derived for small penetrant molecules and for 
temperatures corresponding to the rubbery range of the material. Local motions 
of the main chains or of the side groups, as well as Brownian motions of the 
penetrant molecules, are known to persist in the glassy state as well. A list of 
possible local chain motions is given in Reference 13. Since such local segmental 
rearrangements can drive the diffusion of small penetrant molecules, the 
phenomenological model derived earlier still applies in principle below the glass 
transition temperature, except for the temperature dependence. The reason that 
the temperature term is not valid any more is that (Y describes the dilatation of 
the free volume above Tg only. (a is equal to the difference between the volume 
thermal expansion coefficient of the specific volume and that of the occupied 
volume). Below Tg, the fractional free volume is much less temperature- 
dependent (although it is still time-dependent due to aging). It has been shown by 
Matsuoka et al. that the abrupt change in the temperature dependence at the 
glass transition can be explained by using the Adam-Gibbs' formula for the 
relaxation beha~ior . '~  The Adam-Gibbs' formula expresses the shift factor in 
terms of the configurational entropy of the polymer, rather than in terms of the 
free volume. The configurational entropy is used as a measure of the size of the 
cooperatively-rearranging region and seems to give a better description of the 
state of the polymer below Tg than the free volume. This entropy-based approach 
leads to an Arrhenius-like equation if the entropy is frozen at some value, as in 
the rapidly quenched glassy state, or leads to a Vogel-Fulcher-like equation 
(same as WLF) above Tg .  In order to remain consistent with the above results as 
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MOISTURE IN ADHESIVE JOINTS. PART I 1 1  

well as with expression (lo), the following form is proposed for the diffusion 
coefficient below T g :  

( t:) ( B D  E f k + Y C N  } D = Dg exp - - exp - 
fg fg + d k +  yCN 

where: A H  = activation energy 

Expression (27) states that the free volume continues to govern the effect of stress 
and swelling below the glass transition temperature, implying that these forces act 
primarily on very local volumetric properties such as the critical void size. By 
contrast, temperature appears to affect motions over larger volumes encompass- 
ing cooperative segmental motions. The Arrhenius temperature dependence 
shown in expression (27) has been observed experimentally on numerous 
penetrant-polymer systems below the glass transition temperature.' Often, the 
Arrhenius form is also used above T g ,  with an activation energy differing from 
that below T g .  This is simply due to the fact that the WLF equation can be 
mathematically fitted as an Arrhenius equation by using an apparent activation 
energy. 

Of course, f is not the same at, and below, the glass transition temperature. 
Thus, expression (27) by itself gives an incomplete description of the material 
behavior. This apparent inconsistency is dealt with by introducing physical aging 
into the model. We will see that the use of a shift factor (acceleration factor) is 
phenomenologically equivalent to having a reduced E{k.  

In the rubbery state, equilibrium is reached very rapidly in response to 
variations in temperature, stress, and penetrant concentration. This is due to  the 
fact that the free volume response is quasi-instantaneous under these conditions. 
By contrast, a material in the glassy state is not in thermodynamic equilibrium 
and the response of the free volume to changes in external conditions is delayed. 
For this reason, a time-dependent diffusion coefficient containing hereditary 
integrals is more promising for the glassy range. Expression (27) is still valid 
instantaneously, however, and can be used in an iterative numerical scheme. 
Glassy polymers have a volume enthalpy and entropy which are larger than they 
would be in the equilibrium state. This metastable (or supercooled) state causes 
the free volume to collapse slowly with time until equilibrium is reached. The 
phenomenon is known as physical aging.'*. Successful diffusion modelling in the 
glassy range must incorporate this important effect. 

Struik" proposed a simple method to incorporate aging into existing constitu- 
tive equations. The time-dependent reduction of the free intermolecular space 
causes relaxation processes to take place over a longer time. Thus, an 
acceleration factor was defined in order to relate actual time to effective time: 

R = the gas constant 

d A  = a( t )  dt (28) 
where: h = effective time 

t = actual time 
a ( t )  = acceleration factor 
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12 D. R .  LEFEBVRE, D. A. DILLARD AND T. C. WARD 

The acceleration factor may also be defined in terms of molecular mobility M ( t ) :  

where: t, = aging time at the start of service life or testing 

Struik proposed the following power law for the acceleration factor: 

t = service life or test time 

c 
a ( t )  = (L) 

t, + t 
where p is a constant and 0 5 p 5 1. Expression (30) was derived theoretically 
and confirmed by long-term experiments.I8 We conclude that expression (23) can 
be readily modified to incorporate aging, by replacing actual time t by effective 
time A in the integral symbols. Moreover, we have established from the above 
discussion that A is related to t by: 

At this stage, it must be noted that there exists a secondary transition 
temperature T, in the glassy range below which physical aging ceases, due to 
extremely low molecular mobility. It follows that the above treatment no longer 
applies below T,. Adamson” has proposed both a conceptual model and an 
experimental method to estimate the free volume in the entire glassy region, 
including the truly glassy region below T,. Further, his data confirm that the free 
Volume Theory of molecular mobility-with some minor revisions-still explains 
observed sorption behavior in the glassy domain. It is true that the physics of free 
volume is basically incorrect in a non-equilibrium state such as the glassy state. 
However, it still remains that the basic concepts of the theory are extremely 
helpful in deriving correct predictive models for the behavior under stress. As 
demonstrated by Knauss,16 in the field of viscoelasticity these models can be 
valuable tools for life prediction, in spite of their inherent imperfection. 

A POTENTIAL FIELD FUNCTION FOR THE STRESS-INDUCED DIFFUSION FLUX 

It was shown earlier that stress (strain) can affect the diffusion rate in two ways: 
(1) by altering the mobility of the penetrant and (2) by producing an extra driving 
force. By relating the diffusion coefficient to  strain, we addressed the mobility 
effect. We must now establish a theoretical background to estimate the magnitude 
of the stress-induced driving force. A primary cause for this driving force in a 
joint is uneven swelling in the direction of the moisture flux. Uneven swelling 
gives rise to pressure gradients along constrained bond lines. In contrast to fluids, 
e.g., where pressure energy is dissipated, viscoelastic solids (adhesives) will store 
some elastic energy, causing the chemical potential of the penetrant to  be 
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MOISTURE IN ADHESIVE JOINTS. PART I 13 

changed. The potential energy function introduced in expression (5) is a measure 
of this free energy change. 

Various forms have been suggested for the potential field function Wp by 
workers interested in the diffusion of interstitials in stressed metals,20.21 in the 
stress-induced diffusion of macromolecules,2722 and in the stress-assisted diffusion 
of small penetrants in polymers.' In each case, the method consisted of finding 
the entropic potential of the diffusing species under the stress conditions of 
interest. For the problem of transport of small. penetrant molecules in polymers, 
we will take the free energy of mixing of a sorbent (subscript 1) with a polymer 
(subscript 2), for our entropic potential function. From the Flory-Huggins 
theory,23 we know that the chemical potential of the sorbent is given by: 

p ,  = pee': + RT[xIv :  + Ln v l  + v2] (32) 
where: v ,  = volume fraction of penetrant 

v2 = volume fraction of polymer 
x1 = Flory-Huggins interaction parameter 

Let V, and V2 be the volume of penetrant and polymer, respectively, in the 
binary mixture. The fractional free volume may then be defined as: 

f = -  Vf 
v2 

(33) 

Using the same notation as in the section dealing with diffusivity, and assuming 
that the penetrant tends to fill the available free volume, the volume of penetrant 
may be approximated by: 

VI = V2f (34) 
The volume fraction of polymer under stress may be approximated by: 

1 
1 + f" + dk + yCN v2e = (35) 

Likewise, the volume fraction of penetrant under stress (before the system has 
recovered to an equilibrium state) may be approximated by: 

fo + YCN 
1 + f" + &f,, + yCN V I E  = 

Since the formation of extra "holes" in the presence of mechanical deformation 
does not affect the sum of all pair-wise interaction energies between the polymer 
and the penetrant molecules, the enthalpy term in expression (32) is unchanged 
under stress. Thus the chemical potential pf of the penetrant in a strained 
polymer is given by: 

+ fo+ YCN + L n  
1 
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14 D. R. LEFEBVRE, D. A. DILLARD AND T. C. WARD 

The excess chemical potential of the penetrant with respect to the unperturbed 
state is given by: 

Spf is the excess entropic potential of the diffusing species under stress, and can 
be taken as our potential field function W,. 

Rearranging expression (38) and noting that fo << 1 ,  Efkk << 1 and yCN << 1 in all 
polymer-penetrant systems of interest in this study (small strains, minimal 
swelling), it immediately follows that: 

vwp 2. -RT V d k  (39) 
and the stress-induced flux is: 

J"- +DcvEf ,k  

Note that Efkk is related to the trace of the stress tensor by an instantaneous 
compressibility. Thus, to some extent, V&fkk is analogous to a pressure gradient. 
However, in contrast to pressure, which can only be positive, strain or stress may 
be positive or negative, leading to an increase or decrease of the chemical 
potential. Therefore, the excess chemical potential defined earlier is an algebraic 
quantity. 

Consider a polymer constrained between two rigid adherends held at a fixed 
distance. If the polymer tends to swell in the presence of moisture, &, which is 
the mechanical component of free volume dilatation, becomes negative and more 
so as the concentration of penetrant increases (See Part I11 for the constitutive 
relations describing the hygro-mechanical behavior). Thus VC and VEfkk have 
opposite signs and the two corresponding fluxes are of the same sign, leading to 
accelerated moisture penetration. This prediction is consistent with a number of 
results reported in Reference 7. 

THE STRESS AND TEMPERATURE DEPENDENCE OF SOLUBILITY 

The stress (strain) dependence of solubility must be addressed if one wishes to 
obtain correct concentration predictions. In this section, Peterlin's approach24 will 
be used to evaluate the solubility S in relation to temperature and stress. It will be 
shown that the predicted sensitivity of S to stress is an order of magnitude lower 
than the sensitivity of the diffusion coefficient to stress and that an Arrhenius-type 
of relation is obeyed for temperature. Once again, the free volume concept will 
prove to be extremely helpful in deriving the constitutive equations. 

PeterlinZ4 used the Hildebrand treatment of the thermodynamics of polymer- 
solvent mixtures, in which the entropy of mixing appears as a function of the 
fractional free volumes of the polymer (f2) and of the penetrant (fi). The mixture 
is treated as a two-component van der Waals liquid whose entropy is proportional 
to the logarithm of the volume available for kinetic movement, which is assumed 
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MOISTURE IN ADHESIVE JOINTS. PART I 15 

to be equal to the free volume of the mixture.23 Assuming that the resultant free 
volume fraction of the two-component system can be obtained by a linear rule of 
mixtures, 

the following expression for the chemical potential of the penetrant was obtained: 

f = V l f l  + v2fi 

p ,  = py + R T [ x , v :  + v; + Ln(1- v;)] 

(41) 

(42) 
where: 

Expression (42) is another form of the Flory-Huggins equation shown in the 
previous section. (The same notation is used). Note that fi, the free volume 
fraction of the polymer, is equal to the fo parameter introduced earlier and that 
the free volume fraction fi of a low molecular weight penetrant is generally larger 
than f2. The chemical potential of the sorbent in the vapor phase is given by: 

P 
p ,  = py + RT Ln - 

pr (44) 

where P / P T  is the activity of the vapor in terms of partial pressure. At 
equilibrium, the chemical potential of the sorbent in the vapor phase must be 
equal to the chemical potential of the sorbent dispersed in the polymer. 
Expressing this equality and assuming small sorption (v2 close to l ) ,  gives: 

By definition, solubility in weight fraction can be expressed as: 

P l V l  S=- 
PP*V2 

where: p l  = density of the sorbent 
p 2  = density of the polymer 

It follows that solubility is related to the polymer free volume fraction by: 

The fractional free volume appears as an entropic quantity measuring the 
probability for the creation of a sorption site. Thus, by changing the free volume 
of the polymer component, stress acts predominantly on the entropy of the 
system (see expressions (42) and (43)). According to our notation, the free 
volume fraction of the polymer under strain is given by: 

where: f': = f o .  
h=f:(I +$) 
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16 D. R. LEFEBVRE, D.  A .  DILLARD AND T. C. WARD 

Substituting expression (48) into (47) yields our final result for the strain 
dependence of solubility: 

Now, from the Flory-Huggins theory, we know that the interaction parameter is 
related to the heat of mixing AH, by: 

Substituting (50) in (49), and noting that v2 is close to 1, yields an Arrhenius type 
of temperature dependence: 

where: S, = constant. 

Note that in the case of a vapor in contact with the polymer, the activation energy 
for solubility also contains the heat of condensation of the vapor. This is due to 
the fact that, in the Hildebrand theory, the reference state of the two unmixed 
components is the liquid state. 

Thus, according to this treatment, the relative change in solubility due to  stress 
is equal to the mechanical dilatation of the free volume normalized to the initial 

AH, = activation energy for solubility (enthalpy of mixing). 

free volume fraction: 

where: So = solubility under zero strain for a fixed temperature. 
An alternate and more direct treatment of the strain dependence of solubility is 

to assume immediately that the solubility is proportional to the total fractional 
free volume of the polymer. This model is based on the assumptions that (1) once 
equilibrium sorption is achieved, sorbent molecules fill all the available free 
volume, including the strain-induced free volume, and that (2) swelling is 
negligible: 

(53) 
SO 
fo S=-(fo+ d k )  

which is obviously equivalent to expression (52). It will be shown in Part I1 that 
the above result agrees quite well with data collected on the carbon dioxide-low 
density polyethylene system, but that lack of agreement is found in the case of 
water in Ultem 1OOO. 

The relative change of the diffusion coefficient due to a small strain will be 
determined in Part 11. It will be shown that: 

6D B D  
(54) 
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MOISTURE IN ADHESIVE JOINTS. PART I 17 

Recalling that B D  is close to 1 and that fo is quite small (0.03), we conclude that 
diffusivity should be more sensitive to strain than solubility, by one or  two orders 
of magnitude. Also, note that diffusivity is much less affected by strain in the 
rubbery range than in the glassy range. This property may be attributed to the 
larger free volume in the rubbery range to the virtual incompressibility of 
rubbers. 

CONCLUSION 

A comprehensive model for the isothermal diffusion of gases and vapcrs in 
polymers has been discussed. All our results can be summarized in a system of 
three governing equations: 

a c  
- = v * {D(&C)[VC - 
at 

where: = normalized concentration 
So = solubility in the reference state 
PS = experimentally or theoretically-determined coefficient 
P = vapor pressure 
D,, = diffusion coefficient in the reference state 

&fkk = dilatation of the free volume 
y = coefficient of swelling expansion 
fo = reference fractional free volume of the polymer 

B D  = parameter inversely related to the critical void size 

It is now firmly established that the diffusion boundary value problem of 
interest in joint durability studies is highly non-linear and is coupled with the 
mechanical response of the polymer. The fully-coupled solution for a number of 
boundary value problems will be given in Part 111, using finite element analysis. 
Note that Eqs. (55) to (57) are implicitly time dependent. It follows that the 
above closed-form representations are incorrect when not properly coupled, in 
some iterative scheme, with the equations describing the viscoelastic response. 
(Convolution notations, as in expression (23), could be used, but would only add 
confusion with no real gain in rigor). 

In Part 11, experimental diffusion data on a number of polymer-penetrant 
systems will be used to validate the diffusivity and solubility models developed in 
this section. Particular emphasis will be placed on the effect of stress (strain) on 
the transport rate. 
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